Nonparametric regression estimation for dependent functional data: asymptotic normality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Asymptotic properties of nonparametric M-estimation for mixing functional data

Article history: Received 19 February 2006 Received in revised form 20 May 2007 Accepted 1 May 2008 Available online 22 May 2008 MSC: primary 62N02 62G09 secondary 62E20

متن کامل

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

A Nonparametric Regression Spectrum : Estimation, Asymptotic Properties and Data Analysis

Classical spectral analysis in statistics considers decomposition of stationary time series into sinusoidal components. The autocovariance and the spectrum are fundamental elements for analyzing a given time series both in time and frequency domain. However, in practice one frequently observes nonstationary time series. In order to apply spectral analysis to these processes, an extension of the...

متن کامل

Nonparametric estimation for dependent data

Nonparametric estimation for dependent observations has a long history in statistics. Rosenblatt [42] first studied density estimation for dependent data. Since then several authors have considered nonparametric estimation under various assumptions (notable early articles include Robinson [39] and Hart [29]). For example, Hall and Hart [25], Giraitis et al. [22], Mielniczuk [34] and Estevas and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2005

ISSN: 0304-4149

DOI: 10.1016/j.spa.2004.07.006